Quati: An Automated Tool for Proving Permutation
Lemmas

Vivek Nigam', Giselle Reis?, and Leonardo Lima'

1 Universidade Federal da Paraiba, Brazil
2 Technische Universitit Wien, Austria

Abstract. The proof of many foundational results in structural proof theory, such
as the admissibility of the cut rule and the completeness of the focusing disci-
pline, rely on permutation lemmas. It is often a tedious and error prone task to
prove such lemmas as they involve many cases. This paper describes the tool
Quati which is an automated tool capable of proving a wide range of inference
rule permutations for a great number of proof systems. Given a proof system
specification in the form of a theory in linear logic with subexponentials, Quati
outputs in IKIEX the permutation transformations for which it was able to prove
correctness and also the possible derivations for which it was not able to do so. As
illustrated in this paper, Quati’s output is very similar to proof derivation figures
one would normally find in a proof theory book.

1 Introduction

Permutation lemmas play an important role in proof theory. Many foundational results
about proof systems rely on the fact that some rules permute over others. For instance,
permutation lemmas are used in Gentzen-style cut-elimination proofs [4], the complete-
ness proof of focusing disciplines [1,7], and the proof of Herbrand’s theorem [5].
Proving permutation lemmas, however, is often a tedious and error-prone task as
there are normally many cases to consider. As an example, consider the case of per-
muting V; over —; in the intuitionistic calculus LJ. In order to show whether these two
rules permute, one needs to check every possible case in which —; occurs above V; in
a derivation. When using a multiplicative calculus, there are four possibilities for such
derivation, two allow a permutation of the rules while the other two do not. Here’s one

of each: P2 ©3 P1 #3
$1 I'+-A I",QBFF) ¥2 IPHF I'" B,QFF l
rpP+-F I',T" A= BQFF Vi r'-A In,r",PvQ,BFF .
r,r',r",A— B,PVQFF ~ I, r",PvQ,A— B+ F
P2 ®3
Y1 I''QrA 1",B+F L
rP-r 1',1",A— B,QFF v,
r,r’',r”,A— B,PVQFF ~ 7

The combinatorial nature of proving permutation lemmas can be observed in this ex-
ample. While there are “only” four cases to consider for this pair of rules, for proving

the completeness of the focusing discipline, one needs to study which permutations are
allowed and therefore all pairs of rules need to be considered [7]. Moreover, the fact
that the cases are rarely documented makes it hard for others to check the correctness
of the transformations. For instance, the cut-elimination result for bi-intuitionistic logic
given by Rauszer [14] was later found to be incorrect [2] exactly because one of the per-
mutation lemmas was not true. Therefore, an automated tool to check for these lemmas
would be of great help. This paper introduces such a tool called Quati.’

While here we will restrict ourselves to simply illustrate Quati’s functionalities and
implementation design, we observe that its underlying theory is described in the pa-
pers [8,13,9]. We briefly review this body of work.

In [13], we show how to reduce the problem of proving permutation lemmas to
solving an answer-set program [3]. That is, given a proof system P satisfying some
properties, we reduce the problem of checking whether a rule r; in P always permutes
over ry in P to solving an answer-set program. Each solution of this program corre-
sponds to one possible permutation case. This result sets the foundations for Quati.

However, the exact language in which proof systems are specified was not dealt
in [13]. It was subject of the paper [8] which shows that a great number of proof systems
for different logics (e.g., linear, intuitionistic, classical, modal logics) can be specified
as theories in linear logic with subexponentials (SELL) [11]. These specifications are
shown to have a strong adequacy, namely, on the level of derivations [12], meaning that
there is a one to one correspondence of derivations in the specified logic (object logic)
to derivations in linear logic with subexponentials. Moreover, [8] also shows how to
check whether proof systems specified in SELL admit cut-elimination. This lead to the
tool TATU*. Therefore, SELL is a suitable framework for specifying proof systems.

Finally, in the workshop paper [9], we show how to integrate the material in [13]
and [8]. Given a proof system specified in SELL, we reduce the problem of checking
whether a rule permutes over another to an answer-set program. In the same paper, we
also discuss how to extract proof derivation figures similar to those shown in a standard
proof theory book [15] from the solutions of the generated answer-set programs.

Quati is the result of this series of papers. This paper is organized as follows: Sec-
tion 2 describes Quati’s syntax and its features, while Section 3 describes its implemen-
tation. In Section 4 we end by pointing out future work.

2 Quati at Work

Throughout this section, we will use the specification for the intuitionistic logic’s multi-
conclusion calculus MLJ [6] as our running example. First we specify Quati’s syntax
and then its features. In the Appendix you can find a step-by-step user session of the
Quati system for this example as well as the proof system MLJ.

2.1 Syntax

Quati’s underlying logic, linear logic with subexponentials (SELL) [11], is a powerful
framework for the specification of proof systems. Subexponentials, written !¢, ?¢, arise

* Quati is a mammal from the raccoon family native to South America. Its name comes from the
Tupi-guarani, a language spoken by native indians in Brazil, and means “long nose”.
‘https://www.logic.at/staff/giselle/tatu/

https://www.logic.at/staff/giselle/tatu/

Side := 1ft | rght CtzType :=many | single SubType :=unb | lin

SubSig ::= SubDecl SubSpec SubRel

SubDecl ::= subexp(String){(SubType).

SubSpec ::= subexpctx(String)(CtzType)(Side).

SubRel ::= subexprel(String)<(String).

Bipoles ::= (not (Atoms))(BodyPos).

BodyPos ::= one | BodyNeg | [{(String)lbangBodyNeg |
BodyPosxBodyPos | BodyPos+BodyPos

BodyNeg ::= top | bot | (MarkAtoms) | (BodyNeg)|(BodyNeg) |
(BodyNeg)s&(BodyNeg)

Atoms ::= (Side)(Form) MarkAtoms ::= [(String)] ?(Atoms)

Fig. 1. Here Form is a term of type form.

1@ +:0 &:& |:%9 [ilbang:!® one:1 top:T bot:Ll [i]?:7

Fig. 2. Syntax for the linear logic connectives.

from the observation that the linear logic exponentials are not canonical (see [8] for
an extensive discussion). It is known that these operators greatly increase the expres-
siveness of the system when compared to linear logic. For instance, subexponentials
can be used to represent contexts of proof systems [8], to mark the epistemic state of
agents [10], or to specify locations in sequential computations [11]. The main feature
of subexponentials is that they can be organized in a pre-order, <, which specifies the
provability relation among them. In [8], we have shown that a great number of proof
systems for linear, classic, intuitionistic and modal logics can be specified in SELL with
a strong level of adequacy. Another important reason for using SELL as specification
language is that one can also use other available tools, such as the tool TATU which is
capable of checking whether a proof system specified in SELL admits cut-elimination.

A Quati program is a SELL theory with some more annotations. Its syntax is given
in Figure 1 and explained in detail by using our running example MLJ. A Quati program
consists of two files: (1) a type signature file, with suffix . sig and (2) a specification
file with suffix . pl consisting of two parts: (a) a subexponential signature and (b) the
rules’ specifications or bipoles.

Type signature This file contains type and kind declarations of the object logic’s ele-
ments. The kind form is built-in and represent the type of formulas of the object logic.
In general, only the connectives’ types need to be declared in this file:

o o ° . 0000000000000000
C0C0000000000060000G0 Slgnature ©T000C00000000000000T0O0

type imp form -> form -> form.

Subexponential signature The following subexponential signature is used for specify-
ing the proof system MLJ:

09000

$%%%5%%%%%%%%%%% Subexponential Signature $%%%%%%%%%%%%%%%%
subexp 1 unb. subexp r unb.

subexpctx 1 many 1lft. subexpctx r many rght.
subexprel 1 > r

Intuitively, one subexponential corresponds to one context of the object logic se-
quent.’ MLJ has only two contexts, one to the left and another to the right side of the
sequent, thus we use two subexponentials 1 and r. Moreover, as both contexts (to the
left and right) behave classically in MLJ, we specify 1 and r to be unbounded, denoted
by unb. In contrast, the specification of LJ would specify the subexponential r to be
linear, as the right side of LJ’s sequents behaves linearly.

The commands subexpctx 1 many 1ft. and subexpctx r many rght.
are not formally needed for specifying proof systems, but as discussed in [9], they are
needed in order to improve the visualization of the proof rules. In particular, the former
specifies that the context corresponding to the subexponential 1 contains only formulas
of the left side of the sequent, denoted by 1£ft, and may contain many formulas, de-
noted by many. In contrast, as the context to the right side of LJ sequents has only one
formula, the subexponential r for that system would be annotated with single.

The pre-order among the subexponentials is specified on the last line using the key-
word subexprel.

Bipoles The second part of the . pl file is composed by bipoles. The concrete syntax
for SELL connectives is depicted in Figure 2. The class of bipole formulas often appear
in proof theory literature due to its good focusing behaviour [1]. The following bipoles
specify, respectively, the left and right implication introduction rules [8]. The capital
letters are assumed to be existentially quantified.

imp A B))) * (([r]? (rght A)) = ([1]? (1ft B))).
(not (rght (imp A B))) x [llbang (([1]1? (1ft A)) | ([r]? (rght B))).

The head of these bipoles, formulas (not (1ft (imp A B))) and (not (rght

(imp A B))), specify that an implication formula to, respectively, the left and right-
hand-side is introduced. The body specifies the premises of these rules. For instance,
the first bipole specifies that its corresponding inference rules has two premises be-
cause of the branching caused by the tensor » appearing in the body of its rule, while
the second has only one premise as no branching is required. The interesting bit is the
I" ([1]bang) in the second bipole specifying that the context of the subexponential r
should be weakened as 1 > r. In fact, by using advanced proof theoretic machinery,
namely focusing [1], we can make this intuition precise in the sense. We refer to [8] for
more details on encodings.

2.2 Features

Quati has two main features: (1) It can construct the corresponding inference rule(s)
associated to a SELL formula; and (2) it can prove permutation lemmas. We illustrate
these features with the specification of MLJ implication introduction rules shown above.
5 There are some specifications where a subexponential is used to capture the structural proper-
ties of the proof system and therefore does not necessarily correspond to a context in the object
logic. See [8] for more on this.

Rule Construction Proving the adequacy theorems for a given SELL specification is
also error-prone. As detailed in [8], to prove (strong) adequacy we need to show that all
the possible focused derivations that introduce a formula in the specification correspond
to an inference rule of the proof system being specified. Quati automates the proof of
such adequacy theorems by constructing from a bipole the corresponding inference
rule. To do so, Quati uses the machinery described in [13,9] reducing this problem to
the problem of solving answer-set programs.

For the MLJ specification given above, one can use the command #rule in the
command line and select a SELL bipole in the loaded specification. Then Quati gen-
erates a ATEX document containing all possible inference rules that correspond to that
bipole. If we select the bipole used to specify MLIJ’s implication right rule, Quati out-
puts the IZTEX code for the following figure:

i atkib
i I =i A9, imp(a)(b)

iMpR

Notice that this rule looks very similar to MLJ’s implication right introduction rule
shown in any proof theory textbook. The context AY is erased in the premise. The i and
 are used to delimit the contexts for the subexponentials 1 and r, respectively. Quati
uses the subexponential specification to infer that the context for 1 (resp. for r) should
only be on the left-hand-side (resp. right-hand-side) of the sequent.

Under the hood, Quati is constructing the focused derivation [1] that introduces
such a SELL bipole as described in [8]. This can be observed by using the command
#bipole. For the same SELL bipole used above, Quati returns the ISTEX code for the
following figure, corresponding to its focused derivation:

5 7. 5.l .
rqamma’Fr7Fl 7Finfty’ﬂ

L mmas T2 rp; Filnfty; N?rrght(b)
F;amma; ry; Fls; Filnft,y; M2 ft(a) 7" rght(b)
L mmas T2 TE; F'ilnfty; M2 ft(a)®? rght(b)
F;‘amma; r Ff’; F,ilnfty; —rght(imp(a)(b)) F;;’amma; I?; FZS; I’,ilnfty; YUt ft(a)@?mrght(b)
Fgamma; r; FZS; Fil'n.fty; U —rght(imp(a)(b))R1?ft(a)®?"rght(b)
I3 ommas DA T2 D pes

Rule Permutation As described in the Introduction, Quati can be used to prove per-
mutation lemmas. The command #permute checks whether the permutation of two
selected rules is always allowed or not. Quati outputs, again in I&IEX, the cases for
which it was able to find the permutation and the cases for which it was not able to find
a permutation. For example, when Quati checks whether MLJ’s implication left intro-
duction rule permutes over MLJ’s implication right introduction, it correctly finds two
possible permutation cases and it cannot find one of the cases for which is indeed not
possible. We show one of the cases (reformatted to fit the page margins):

i P, imp(a)(b),c i d
i P, imp(a)(b) b+ A2, imp(c)(d), a
i 1P, imp(a)(b) i A2, imp(c)(d)

impr LI}, imp(a)(b), b =i A7, imp(c)(d)

impr,

i 7 imp(a)(b), c Fia,d i I}, imp(a)(b),c,b i d

i Iy, imp(a)(b), c i d)

~ . YMPR
i I7 imp(a) (b) B A2, imp(c)(d)

mmpr

Once again, this proof figure is very similar to the proof figure that one would find
in a standard proof theory textbook. Notice that it uses the fact that the contexts are
unbounded, i.e. formulas can be contracted or weakened, to infer the permutation above
(see [13] for more discussion on how this works).

3 Implementation Details

Quati is implemented in OCaml® and makes use of DLV externally to compute mini-
mal models for the answer-set programs generated. It is part of a bigger project, called
sel1£® which also includes the machinery for TATU mentioned above. The follow-
ing diagram provides an overview of the main modules in sellf used by Quati for
checking permutations.

-
Permutation W

I
' T\ pes
I
I
I

' Sequem Schema
I

I

I

I

]

’

The basic data structure, defined in the module Types, is linear logic formulas with
subexponentials. The bipoles in Quati are represented by proof tree schemas, defined
in the module ProofTreeSchema, which uses the modules Sequent Schema and
ContextSchema. As the name suggests, these are schematic representations of proof
trees, sequents and contexts that use generic contexts [13] to represent possibly non-
empty sets of formulas. The constraints that will later compose the answer-set program
are implemented in the module Constraints. The application of linear logic rules
with constraints is implemented in the Proof TreeSchema module. The computation
of possible bipoles of a formula is in the module Bipole. The Permutation module
makes use of the bipole generation to construct the derivations of two rules. Given the
constraints of a derivation, module D1v contains the code for executing DLV externally,
parsing the result and returning the minimal models. The translation of a proof tree
schema and constraints into an object logic derivation is done in the O1Rule module.

ContextSchema

®http://ocaml.org/
"http://www.dlvsystem.com/dlv/
$https://code.google.com/p/sellf/

http://ocaml.org/
http://www.dlvsystem.com/dlv/
https://code.google.com/p/sellf/

It contains data structures to represent proof trees, sequents and contexts of an object
logic and the rewriting algorithm described in [13] (module Derivation).

Quati was tested using some proof systems including LK, LJ, MLJ, LL, S4, GIm
and LAX. On most cases, each permutation lemma can be checked in less than one
second. The implementation can be downloaded at

http://www.logic.at/staff/giselle/quati.

4 Conclusions and Future Work

This paper introduced Quati, an automated tool for proving permutation lemmas. Be-
sides briefly commenting on its implementation, we illustrated its syntax, usage and
features. Besides MLJ, in the download one can find the specification of all proof sys-
tems tested, as well as system requirements and installation instructions.

There are several directions we are currently investigating for continuing this work.
One is to come up with more graphical ways of writing proof systems and how to trans-
late such representations into SELL specifications. Another possibility is the derivation
of completeness of focusing strategies in an automated fashion, since such theorems
rely heavily on permutation lemmas. Finally, we are investigating ways to construct
machine-readable proof objects for permutation lemmas.

References

1. J.-M. Andreoli. Logic programming with focusing proofs in linear logic. J. of Logic and
Computation, 2(3):297-347, 1992.

2. T. Crolard. Subtractive logic. Theor. Comput. Sci., 254(1-2):151-185, 2001.

. M. Gelfond and V. Lifschitz. Logic programs with classical negation. In /CLP, 1990.

4. G. Gentzen. Investigations into logical deductions. In The Collected Papers of Gerhard
Gentzen, 1969.

5. J. Herbrand. Recherches sur la Théorie de la Démonstration. PhD thesis, 1930.

6. S. Maehara. Eine darstellung der intuitionistischen logik in der klassischen. Nagoya Mathe-
matical Journal, pages 45-64, 1954.

7. D. Miller and A. Saurin. From proofs to focused proofs: a modular proof of focalization in
linear logic. In CSL, 2007.

8. V. Nigam, , E. Pimentel, and G. Reis. An extended framework for specifying and reasoning
about proof systems. Accepted to Journal of Logic and Computation. Available at http:
//www.nigam.info/docs/modal-sellf.pdf

9. V. Nigam, , G. Reis, and L. Lima. Quati: From linear logic specifications to inference rules
(extended abstract). Brazilian Logic Conference (EBL), 2014. Available at http: //www.
nigam.info/docs/ebll4.pdf

10. V. Nigam. On the complexity of linear authorization logics. In LICS, 2012.

11. V. Nigam and D. Miller. Algorithmic specifications in linear logic with subexponentials. In
PPDP, 2009.

12. V. Nigam and D. Miller. A framework for proof systems. J. Autom. Reasoning, 45(2):157—
188, 2010.

13. V. Nigam, G. Reis, and L. Lima. Checking proof transformations with ASP. In ICLP (Tech-
nical Communications), 2013.

14. C. Rauszer. A formalization of the propositional calculus h-b logic. Studia Logica, 1974.

15. A.S. Troelstra and H. Schwichtenberg. Basic Proof Theory. 1996.

w

http://www.logic.at/staff/giselle/quati
http://www.nigam.info/docs/modal-sellf.pdf
http://www.nigam.info/docs/modal-sellf.pdf
http://www.nigam.info/docs/ebl14.pdf
http://www.nigam.info/docs/ebl14.pdf

IMA>B—AA TA>B,B— A I'A— B

ASB— A "L T S 4A5BA "
IAANB,A,B — A I —ANBAA I —+ANBBA
IANB — A £ I —AANB,A
LAVBA-—A IAVBB—A I —AVBABA
IAVB — A L T AVB,A "
I'vz A, A{t/z} — A v I — A{c/x}
VoA — A L r—AvzA "
I3z A, A{c/z} — A I' — A, 3z A A{t/x}
3z A— A L I'— A3z A R
Ini I'—B A I'B— A 1
T A— A A it T—A Gt T At

Fig. 3. The multi-conclusion intuitionistic sequent calculus, MLJ, with additive rules.

A A sample Quati session

Once the system is built,” it can be called by simply typing the command: . /quati.
This will start an interactive command line where the user can call the functions we will
demonstrate now. If one wants to see a list of all the functionalities available, just type
#help. We start by loading a file. Throughout this example session, we will use the
specification for the intuitionistic logic’s multi-conclusion calculus MLJ [6].

:> #load examples/proofsystems/mlj

After a file is loaded, the state of the command line will change from :> to ?>.
This indicates that the user can use the commands operating on a specification. The first
command we show is #rule or #rules. It allows the user to see the rules specified
in the file loaded as regular sequent calculus rules. In both cases, the system prints the
rule or rules in a IZIEX file whose name is chosen by the user. By using the command
#rule, the user is presented with the list of bipoles of the loaded specification and
asked to choose one. The object logic rule for this bipole is then printed to a file. By
using the command #rules, the object logic rules of all bipoles are printed to the
output file. In the example below, we asked Quati to print the rule for —, of the MLJ
system.

?> #rule

These are the formulas available:

0. (sigma \B (sigma \A (not (1ft (imp A B) y) *
([r]? (rght A)) *« ([1]2 (1ft B))))

1. (sigma \B (sigma \A (not (rght (imp A B))) *

% Notice that one needs OCaml and DLV systems installed to make Quati work.

R

([1lbang ([1]? (1ft A)) | ([r]? (rght B)))))
The object logic rule of the chosen formula will be generated
and printed to a LaTeX file.

Please choose a formula by its number: 1
Please choose a name for the file: imp_r _mlj

This is the output (after compiling with IXTEX):

iIP akib
i I =i A9, imp(a) (D)

IMpR

Note that the rule has the expected behavior of weakening the formulas of the con-
text on the right, and it is very similar to the way it is presented in text books.

The user has also the option of seeing the actual bipole derivations in linear logic
with subexponentials which correspond to a rule specification. The commands #bipole
and #bipoles are used for that. They work analogously to the previous commands.
The example below shows how to use #bipole to print the bipole corresponding to
the —,. rule of MLJ.

?> #bipole
These are the formulas available:
0. (sigma \B (sigma \A (not (1ft (imp A B))) =
([r]l? (rght A)) * ([1]2 (1ft B))))
1. (sigma \B (sigma \A (not (rght (imp A B))) *
([1lbang ([1]1? (1ft A)) | ([r]? (rght B)))))

The bipoles for the chosen formula will be generated
and printed to a LaTeX file.

Please choose a formula by its number: 1

Please choose a name for the file: bipole_imp_r mlj

The output of this command generates the following proof tree:

o .
gamma’

Il I3 D gy 0
L mmas T2 rp; Filnfty? M?rrght(b) ::
s s T35 T3 Fil"n,fty; M2 ft(a) :?77rght(b) :

gamma’ ~r

Is T3 T T, i N7t (a) 877 rght(b)

gamma?
ryrert fe b —rght(imp(a)()) = Lo mmas L r3;r} Fey' Y12 ft(a)?mrght(b)

m n
L3 mmas T TR T, U —rght(imp(a)(b))R1? ft(a)@?"rght(b) :

'Lnfty;
& .73, 11 .
B ammai T 105 L g 1

gamma’

T4 .
gamma?’

By using the rewrite system introduced in [13], Quati is able to translate this bipole
into the previous inference rule.

Now let’s show how to actually check if two of these rules permute. The commands
to do that are #permute and #permute_all. As one can imagine, the former will
check the permutation of two rules that are chosen by the user, while the latter will
check the permutation of every pair of rules in the specification file. The output of this
command is also a ISTEX file. It contains the cases in which a permutation was found as
well as the cases in which a permutation was not found. Let’s try a permutation in our
example:

?> f#fpermute
These are the formulas available:

0. (sigma \B (sigma \A (not (1ft (imp A B) y) *
([r]? (rght A)) » ([1]? (1ft B))))
1. (sigma \B (sigma \A (not (rght (imp A B))) *
([1lbang ([1]1? (1ft A)) | ([r]? (rght B)))))

Checking the permutation of one formula F1 over another F2
(i.e., can a derivation where F1l is below F2 be transformed
into a derivation where F2 1is below F1)

Please type the number of Fl: 0

Please type the number of F2: 1

Please type a file name for the results: imp_l_imp_r

The output file of this command indicates the these rules might not permute. Quati
identifies permutation for two cases but fails to find for the third one. Its output for the
permutation case is depicted in Section B after compiling in I&TEX:

B Permutation of imp,; ¢+ and imp,.gp.

The rules might not permute. These are the configurations for which a permutation was found:

i 2, imp(a)(b),ctid
i I, imp(a)(b) ki AQ, imp(c)(d), a

i 7, imp(a)(b),c Fia,d i 7, imp(a)(b), e, b i d |
i

impr i T2, imp(a)(b),b i AY, imp(c)(d)

i 10, imp(a)(b) i A2, imp(c)(d)

i 2, imp(a)(b), ctid i 0, imp(a)(b),c,b i d

m

: . mprL
i IV, imp(a)(b), c Fi d

: PR ; im
1 1P, imp(a) (b) i A, imp(c)(d), a LI, imp(a)(b), b =+ A, imp(c)(d)

i I, imp(a)(b) b+ A2, imp(c)(d)

These are the configurations for which a permutation was not found:

i 1P, imp(a)(b) Fi AL, imp(c)(d), a

i 0, imp(a)(b),c,brid

: iMmpR
i 17, imp(a)(b) H A2, imp(c)(d)

i 7 imp(a)(b), ¢ Fia,d i TV, imp(a)(b),c,btid
. mpr
i1 Iy, imp(a)(b), c Fi d

~ - IMpR
i I7, imp(a)(b) Fi A2, imp(c)(d)

i 1P, imp(a)(b), b i AQ, imp(c)(d)

iMPR

i 1P, imp(a)(b) Fi A2, imp(c)(d)

impr,

	Quati: An Automated Tool for Proving Permutation Lemmas

