
Formalized Meta-Theory of Sequent Calculi
for Substructural Logics

Kaustuv Chaudhuria,1 Leonardo Limab,2 Giselle Reisa,3

a Inria & LIX/École polytechnique, France

b Federal University of Paráıba, Brazil

Abstract

When studying sequent calculi, proof theorists often have to prove properties about the systems, whether it
is to show that they are “well-behaved”, amenable to automated proof search, complete with respect to
another system, consistent, among other reasons. These proofs usually involve many very similar cases,
which leads to authors rarely writing them in full detail, only pointing to one or two more complicated cases.
Moreover, the amount of details makes them more error-prone for humans. Computers, on the other hand,
are very good at handling details and repetitiveness.
In this work we have formalized textbook proofs of the meta-theory of sequent calculi for linear logic in
Abella. Using the infrastructure developed, the proofs can be easily adapted to other substructural logics.
We implemented rules as clauses in an intuitive and straightforward way, similar to logic programming, using
operations on multisets for the explicit contexts. Although the proofs are quite big, their writing took no
more than a few weeks once the correct definitions were found. This is an evidence that machine-checked
proofs of properties of sequent calculi can be obtained using a natural encoding on most proof assistants
available nowadays.

Keywords: Sequent calculus, cut-elimination, formalized proof, linear logic, Abella

1 Introduction

Sequent calculus proof systems are perhaps the most standard technique used to

formulate logics. New logics are nearly always proposed in terms of a sequent

calculus. Such proposals are usually also accompanied by certain meta-theorems

about the calculi. Cut-elimination is usually one of the first things to be established,

as it usually entails the system’s consistency and makes it suitable for automated

proof search. Other meta-theorems include identity reduction, which shows internal

completeness of the proof system; rule permutations and inversion lemmas to establish

the polarities of connectives; and focusing theorems that establish the existence of

1 kaustuv.chaudhuri@inria.fr
2 leonardo.alfs@gmail.com
3 giselle.reis@inria.fr

Available online at www.sciencedirect.com

Electronic Notes in Theoretical Computer Science 332 (2017) 57–73

1571-0661/© 2017 The Author(s). Published by Elsevier B.V.

www.elsevier.com/locate/entcs

http://dx.doi.org/10.1016/j.entcs.2017.04.005

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

mailto:kaustuv.chaudhuri@inria.fr
mailto:leonardo.alfs@gmail.com
mailto:giselle.reis@inria.fr
http://www.elsevier.com/locate/entcs
http://dx.doi.org/10.1016/j.entcs.2017.04.005
http://dx.doi.org/10.1016/j.entcs.2017.04.005
http://www.sciencedirect.com
http://creativecommons.org/licenses/by/4.0/

normal forms. Although this meta-theory is very important, the proofs are rarely

spelled out in detail, let alone formally checked by a proof assistant. One big reason

is that these proofs involve a number of cases which is sometimes exponential in the

number of rules in the system, with many of them being very similar. A common

approach in publications is to show one or two characteristic cases in detail and then

to mention that the rest is “analogous” or “trivial”.

Such informal proofs are risky. Girard himself underestimated the difficulty of

cut-elimination in linear logic with exponentials. The terminating proof needed a

much more involved inductive measure and was detailed later on in [4]. A proof of

cut-elimination for full intuitionistic linear logic (FILL) was shown to have a mistake

in [2], and the authors of the proof have later published a full corrected version [3].

A proof of cut-elimination for the sequent calculus GLSV for the provability logic

GL was the source of much controversy until this was resolved in [9] and formalized

in [5] using Isabelle/HOL. Several sequent calculi proposed for bi-intuitionistic logic

were “proved” to enjoy cut-elimination when, in fact, they did not. The mistake is

analysed and fixed in [15]. More recently an error in the cut-elimination proof for

modal logic nested systems was corrected in [13].

The repetitive and detail-intensive nature of these proofs makes them good

candidates for computerization. However, it is rare to find such proofs formalized

along the lines of their informal arguments. Indeed, formalization of these proofs

requires the formalization of details that are generally left implicit in informal

proofs. These include lemmas on sets and multisets which we take as standard (and

invisible) background. The development of this infrastructure and explicit reasoning

on context operations is what we believe makes proof theorists reluctant to formalize

meta-theoretic proofs.

We have thus decided to put this “folk wisdom” to the test and formalize the

meta-theory for several sequent calculi for various fragments of linear logic. As far

as we know, this is the first formalization of its kind. We follow the usual textbook

inductive proofs on the rank of the cut formula and/or proof heights, rewriting

cuts to smaller cuts. We have proved cut-admissibility, invertibility of inference

rules and generalized identity for several systems. Our results show that, with a

good encoding of multisets and their properties, the formalization of particular

meta-theorems can be completed quickly. Moreover, our formalizations use only

elementary theorem proving techniques that can be explained to and carried out by

undergraduate students. All that is required is a basic knowledge of proof theory

and logic programming.

We have used the proof assistant Abella for this task. Our choice is motivated

simply by our familiarity with the tool. As of now, the encoding does not use

any exclusive feature of Abella and can be reproduced in any other proof assistant

supporting induction (we have also an implementation of the multiset library and

some of the meta-theorems with proofs in Coq).

The implementation can be found online at:

https://github.com/meta-logic/abella-reasoning.

K. Chaudhuri et al. / Electronic Notes in Theoretical Computer Science 332 (2017) 57–7358

https://github.com/meta-logic/abella-reasoning

The paper is organized as follows. We give a brief introduction of Abella in

Section 2 and continue with the encoding in Section 3. We explain how multisets

were implemented and show how they are used to specify sequent calculus rules. The

cut-elimination proof contains many cases, one of which we explain in some detail.

By following Section 3 closely, one should be able to generalize the approach to other

sequent calculi. Other formalizations of sequent calculi and their meta-theory are

discussed in Section 4.

2 Background: Relational Reasoning in Abella

We use the interactive proof assistant Abella [1] to formalize our different meta-

theoretic proofs. The logic behind Abella is a conservative extension of intuitionistic

first-order logic; the extensions that are relevant for this paper are:

• The pure simply typed λ-calculus as the term language, together with a primitive

equality predicate on such terms that implements αβη-equivalence with all uninter-

preted constants treated as constructors. The logic is built atop this simply typed

term language following the design of Church’s simple theory of types. There

is a type prop dedicated to formulas of the logic, and all logical connectives are

implemented as constants of target type prop; for example, conjunction ∧ has

type prop → prop → prop, although we write it inline as A ∧ B instead of as

∧ A B.

• Least and greatest fixed point definitions for predicates, i.e., constants of target

type prop. Such definitions come equipped with corresponding induction and

co-induction rules for reasoning about assumptions and conclusions, respectively,

and may additionally be unfolded to replace any instance of the predicate by its

corresponding body.

• Support for extensional universal (∀) quantification. Extensional variables, called
eigenvariables, are allowed to be instantiated by arbitrary terms when reasoning

about equations or during case-analysis. This can be highlighted by the formula

∀x. (x = c) ⊃ p(x) ⊃ p(c) (for some constant c), which is provable because

analyzing 4 x = c has the effect of instantiating x with c, reducing the proof

obligation to p(c) ⊃ p(c). However, ∀x. x �= c is not provable 5 – for instance, it

would be false in a model where c is the only element. Abella also has existential

quantification (∃) and an intensional quantification (∇) that mediates between

the two; the latter of these is not relevant for this particular paper.

A comprehensive introduction to Abella, including a discussion of its features that

are not used in this paper, may be found in the tutorial [1]. The proof theory of G,
the logic underlying Abella, is described in [7,8] and references therefrom.

Unlike many other proof assistants in popular use—such as Coq, Agda, Isabelle,

etc.—Abella follows a relational approach rather than a functional approach to

specifications. The equational theory on terms in Abella cannot be extended by

4 More precisely, using the left-introduction rule for equality in the sequent calculus G [7,8].
5 We define s �= t to be the formula (s = t) ⊃ ⊥.

K. Chaudhuri et al. / Electronic Notes in Theoretical Computer Science 332 (2017) 57–73 59

functional definitions, and hence the term language is just ordinary λ-terms built

from variables, constants, λ-abstraction, and application. If we declare a type nat of

natural numbers with two constants z : nat and s : nat → nat, then the definition of

addition plus would be given in terms of a relation of type nat → nat → nat → prop

that relates the first two arguments to their sum in the third argument. Concretely,

this definition would be specified as follows:

Define plus : nat -> nat -> nat -> prop by
; plus z X X
; plus (s X) Y (s Z) := plus X Y Z.

This definition consists of two definitional clauses which are separated from each other

by semi-colons, and each clause consists of a head and, optionally, a body separated by

:=. Each clause is also implicitly universally (∀) closed over its capitalized identifiers.

The first clause above declares that for any X, the atom plus z X X is true (an

omitted body in a clause is taken to stand for true). The second clause says that for

every X, Y, and Z, the atom plus (s X) Y (s Z) is true if and only if plus X Y Z

is true. This predicate is, moreover, given a least fixed point interpretation, which

means that there are no other ways of deriving plus s t u (for any terms s, t, and

u) besides using one of the two definitional clauses. Note that definitional clauses for

a predicate do not need to have non-overlapping heads, nor is the body of a clause

required to use only subterms of the terms at the head. Thus, iteratively unfolding

a relation can be both non-deterministic and non-terminating.

To prove a theorem about such least fixed point definitions, we use the built in

induction tactic that behaves identically for every definition. As an illustration,

consider the following theorem:

Theorem plus_z_2 : forall X, plus X z X.

To prove this theorem, we need to proceed by induction on the structure of X (which

is of type nat). However, as the only induction principles in Abella apply to least

fixed point definitions, we need to reify the structure of nats as such a definition:

Define is_nat : nat -> prop by
; is_nat z
; is_nat (s X) := is_nat X.

We can then state the theorem as follows: 6

Theorem plus_z_2 : forall X, is_nat X -> plus X z X.

Note that the type signature of constants is not itself endowed with any induction

principles because the signature is open-ended; it may always be extended with

new constants of type nat, for instance. However, no such extension can falsify the

theorem since the is_nat predicate is not extensible.

The proof begins by the tactic invocation induction on 1, which indicates

induction on the first assumption is_nat X, called the inductive argument. Since

there are two definitional clauses for is_nat, there will be two cases to consider.

In the first case, we would obtain the equation X = z in order to match is_nat X

against the clause head is_nat z; this in turn instantiates the (eigen)variable X to

6 Concrete syntax for ⊃, �, ⊥, ∧, ∨, ∀, ∃, and ∇: ->, true, false, /\, \/, forall, exists, and nabla.

K. Chaudhuri et al. / Electronic Notes in Theoretical Computer Science 332 (2017) 57–7360

z, leaving us with the obligation plus z z z, which is easily proved by the first

clause of plus. In the second case, we would obtain X = s X1 where X1 is a new

variable for which we know is_nat X1. The goal now is plus (s X1) z (s X1),

which we can unfold using the second clause of plus to reduce it to plus X1 z X1.

Thus, we are left with the obligation of proving plus X1 z X1 from the assumption

is_nat X1.

To close this loop inductively, Abella reasons by induction on the size of the

inductive argument, which in this case is is_nat X. 7 The initial invocation of the

induction tactic had produced an inductive hypothesis IH:

IH : forall X, is_nat X * -> plus X z X

Here, is_nat X * stands for an instance of is_nat that is strictly smaller than the

initial is_nat X in the goal. The goal is, in fact, rewritten to:

forall X, is_nat X @ -> plus X z X

where the annotation @ indicates that its size is such that every *-annotated instance

is strictly smaller. Unfolding the assumption is_nat X @ reduces its size strictly, so

that in the case of its second definitional clause we get a new assumption is_nat

X1 * (where X = s X1). This can now be fed to the IH to obtain plus X1 z X1,

which is what we needed to finish the proof.

Size annotations represent (strong) induction on linearly ordered sizes, but meta-

theoretic proofs abound with inductions on more complex orderings, particularly

lexicographic orderings. While the logic G underlying Abella has a general induction

rule that can represent any (computable) well-ordering, the implementation of

it using size annotations and circular inductive hypotheses in Abella need to be

generalized further for lexicographic induction. This is achieved by means of size

levels that are created by nested invocations of the induction tactic.

Nested inductions are best explained by an example: consider this relational

definition of the Ackermann function, where ack X Y K stands for K = A(X,Y).

Define ack : nat -> nat -> nat -> prop by
; ack z X (s X)
; ack (s X) z K := ack X (s z) K
; ack (s X) (s Y) K := exists K1 , ack (s X) Y K1 /\ ack X K1 K.

We may wish to show that this is a total relation, something that famously cannot

be done with induction on natural numbers alone:

Theorem ack_total : forall X Y, is_nat X -> is_nat Y ->
exists K, is_nat K /\ ack X Y K.

In this case, we want to induct using the lexicographic ordering of the sizes of

is_nat X and is_nat Y, i.e., the inductive hypothesis may be used if the size of

is_nat X is strictly smaller, or it stays the same and that of is_nat Y is strictly

smaller. In Abella we write this using the following invocation:

7 Every instance of a least fixed point definition is, intuitively, equivalent to ⊥ unless it can be shown to
be true after unfolding it a finite number of times. Thus, non-terminating definitions with clauses such as
p X := p (s X) would be interpreted as ⊥. The size of such defined atoms is defined in such a way that it
is larger than the number of times it needs to be unfolded to determine that it is true. The precise theory of
these size annotations is out of scope for this paper but can be found in [6].

K. Chaudhuri et al. / Electronic Notes in Theoretical Computer Science 332 (2017) 57–73 61

induction on 1. induction on 2.

This produces two inductive hypotheses and modifies the goal as follows:

IH1 : forall X Y, is_nat X * -> is_nat Y -> ...
IH2 : forall X Y, is_nat X @ -> is_nat Y ** -> ...
============================
forall X Y, is_nat X @ -> is_nat Y @@ -> ...

where ... in each case is exists K, is_nat K /\ ack X Y K. The hypothesis

IH1 is familiar from before: it just means that is_nat X * is strictly smaller than

is_nat X @. The hypothesis IH2, on the other hand, has is_nat Y ** which is

strictly smaller than is_nat Y @@. This hypothesis also has an assumption is_nat

X @ which can only be supplied by the corresponding assumption—unmodified!—from

the rewritten goal. Note that the @ and @@ annotations have no relation to each

other except to denote that the latter was introduced while an induction on the

former was in progress. Thus, is_nat X @ would unfold to produce * annotations

and is_nat Y @@ would unfold to produce ** annotations.

In the rest of this development, we will follow a certain style of specifications

where typing predicates such as is_nat are not explicitly assumed in proofs but are

rather produced by inversion on other predicates. Once again, an example illustrates

it best: consider the plus relation again, but rewritten so that the following theorem

holds of it:

Theorem plus_is : forall X Y Z, plus X Y Z ->
is_nat X /\ is_nat Y /\ is_nat Z.

Writing it this way means that we never need to assume both is_nat X and plus

X Y Z, for instance, since the former is derivable from the latter. Here is how we

modify the definition of plus to guarantee plus_is:

Define plus : nat -> nat -> nat -> prop by
; plus z X X := is_nat X
; plus (s X) Y (s Z) := plus X Y Z.

The proof of plus_is is by straightforward induction on plus X Y Z. Note that we

could have sprinkled more is_nat conjuncts in the bodies of the definitional clauses,

but the above choice is sufficient. We will opt to alter the natural definitional clauses

as minimally as possible to yield the necessary inversion lemmas.

3 Encoding an Object Language

In what follows we distinguish between object logic, the logic and proof systems

for which we are formally establishing meta-theorems, and meta logic, which is the

reasoning logic G that forms the basis of Abella.

3.1 Encoding Object Formulas

In this paper we will focus on propositional linear logics, both to simplify the

presentation and to avoid a diversion into representations of object type systems.

Formulas of linear logic are encoded as constants of target type o, which is a type

reserved in Abella for a particular specification language based on higher-order

K. Chaudhuri et al. / Electronic Notes in Theoretical Computer Science 332 (2017) 57–7362

Type atom , natom atm -> o.
Type tens , par o -> o -> o.
Type one , bot o.
Type wth , plus o -> o -> o.
Type top , zero o.

Define is_fm : o -> prop by
; is_fm (atom A)
; is_fm (natom A)
; is_fm (tens A B) := is_fm A /\ is_fm B
; is_fm one
; is_fm (par A B) := is_fm A /\ is_fm B
; is_fm bot
; is_fm (wth A B) := is_fm A /\ is_fm B
; is_fm top
; is_fm (plus A B) := is_fm A /\ is_fm B
; is_fm zero.

Fig. 1. Definitions of formulas

hereditary Harrop formulas. However, we will not be using the specification logic of

Abella in this paper, so we reuse the o type to get access to the convenient syntax

of lists that is built in for lists of os, using the type olist. 8

The definition of linear logic formulas for a one-sided formulation of MALL is

given in Figure 1. We define a new basic type atm of predicates; since type signatures

are open-ended in Abella, our development will be parametric over the inhabitants

of this type. From this type, atoms and negated atoms are built using atom and

natom respectively. We keep formulas in negation-normal form in the one-sided

formulation, so the only formally negated formulas are atoms. Together with these

atoms, we define the predicate is_fm for inducting on the structure of formulas.

3.2 Multisets

The crucial ingredient in the representation of a one-sided sequent calculus for MALL

is the definition of MALL contexts, which must satisfy the following desiderata.

(i) Given two contexts Γ and Δ, we must be able to tell when they are struc-

turally identical, meaning that they contain the same elements with the same

multiplicities.

(ii) Given contexts Γ and Δ and a formula A, we must be able to recognize when

adding A to Γ results in a context that is structurally identical to Δ. This

operation is required in order to implement inference rules as it is used to

represent adding the principal formula in the conclusion of the rule, and the

operands of the principal connective (if relevant) to the premises.

(iii) Generalizing this further, given three contexts Γ, Δ, and Θ, we must be able

to say when adding all the elements of Δ to Γ results in a context that is

structurally identical to Θ, i.e., Θ is the join or the multiset union of Γ and Δ.

This operation is not only required for implementing multiplicative rules such

as ⊗, but also for defining the cut rule(s).

There is a wider than expected design space here. A first attempt might be

8 Abella has a monomorphic type system. A polymorphic extension is in progress and when that is available
there will only be a single parametrically polymorphic type of lists.

K. Chaudhuri et al. / Electronic Notes in Theoretical Computer Science 332 (2017) 57–73 63

Type is_o o -> prop.

Define is_list : olist -> prop by
; is_list nil
; is_list (A :: L) := is_o A /\ is_list L.

% adj J A K : K is J with A inserted somewhere
Define adj : olist -> o -> olist -> prop by
; adj L A (A :: L) := is_o A /\ is_list L
; adj (B :: K) A (B :: L) := is_o B /\ adj K A L.

% merge J K L : J union K equals L.
Define merge : olist -> olist -> olist -> prop by
; merge nil nil nil
; merge J K L := exists A JJ LL, adj JJ A J /\ adj LL A L /\ merge JJ K LL
; merge J K L := exists A KK LL , adj KK A K /\ adj LL A L /\ merge J KK LL.

% perm J K : J and K have the same elements
Define perm : olist -> olist -> prop by
; perm nil nil
; perm K L := exists A KK LL , adj KK A K /\ adj LL A L /\ perm KK LL.

Fig. 2. Implementation of multisets.

to simply use olist as our representation of contexts, with addition of elements

represented by list consing (::) and context joining with list append. This makes

inductive reasoning on contexts rather straightforward, but, because linear contexts

are structurally identical modulo exchange, it requires adding explicit exchange

rules to the system, which complicates the meta-theory. An alternative that works

is still to use olist as our representation, but to relax the notion of structural

identity as follows: two lists are structurally identical if one is a permutation of the

other. Thus, we need a predicate perm : olist -> olist -> prop to recognize

list permutations.

To define the addition operation with this modified notion, we can continue

to use list cons, but this will still require an explicit exchange rule. Instead, we

define a generalized cons operation, called adj, that adds an element somewhere

in an olist, not necessarily at the head. Note that this definition is still sensitive

to the order of elements; for example, adj [b, c] a [a, b, c] holds, whereas

adj [b, c] a [a, c, b] does not. Given this definition, it is a simple matter to

define perm by induction: two lists are permutatively equal if they are produced by

adj-ing the same elements. Finally, to define the join of olists up to permutations,

we simply iterate this process: an olist is the join, written merge, of two olists if

it is produced by adj-ing their elements.

The encoding of multisets we have just described is given in Figure 2. It takes

adj as primitive, and builds perm and merge on top. We may conceivably have

taken perm as primitive and defined the other operations in its terms, or some other

combination, but we found our choice to be rather intuitive. Moreover, Abella’s

built in search tactic, which searches for simple proofs of bounded depth, is often

able to automatically derive perm and merge instances.

The files lib/merge.thm and lib/perm.thm contain theorems about multisets

that are used extensively on the transformations of sequent calculus proofs. These

include simple properties, such as merge’s stability modulo permutation:

Theorem perm_merge_1 : forall J K L JJ,

K. Chaudhuri et al. / Electronic Notes in Theoretical Computer Science 332 (2017) 57–7364

� a⊥, a
init

� Γ1, A � Γ2, B

� Γ1,Γ2, A⊗B
⊗ � 1

1
� Γ, A,B

� Γ, A � B
�

� Γ
� Γ,⊥ ⊥

� Γ, A � Γ, B

� Γ, A � B
� � Γ,� � � Γ, A

� Γ, A⊕B
⊕1

� Γ, B

� Γ, A⊕B
⊕2

Fig. 3. One-sided sequent calculus for MALL

Define mall : olist -> prop by
; mall L := exists A, adj (natom A :: nil) (atom A) L
; mall L := exists A B LL JJ KK J K,

adj LL (tens A B) L /\ merge JJ KK LL /\
adj JJ A J /\ mall J /\ adj KK B K /\ mall K

; mall (one :: nil)
; mall L := exists A B LL J K,

adj LL (par A B) L /\ adj LL A J /\ adj J B K /\ mall K
; mall L := exists LL, adj LL bot L /\ mall LL
; mall L := exists A B LL J K,

adj LL (wth A B) L /\ adj LL A J /\ mall J /\ adj LL B K /\ mall K
; mall L := exists LL, adj LL top L
; mall L := exists A B LL J, adj LL (plus A B) L /\ adj LL A J /\ mall J
; mall L := exists A B LL J, adj LL (plus A B) L /\ adj LL B J /\ mall J.

Fig. 4. Encoding of one-sided MALL

merge J K L -> perm J JJ -> merge JJ K L.

We also require more complicated lemmas, such as the associativity of merge.

Theorem merge_assoc : forall J K L JK KL JKL1 JKL2 ,
merge J K JK -> merge K L KL ->
merge J KL JKL1 -> merge JK L JKL2 ->
perm JKL1 JKL2.

This can be depicted more evocatively as follows, where the arrows define the first

two arguments to merge and ∼ denotes perm.

J K L

JK KL

JKL1 JKL2∼

Proving this theorem requires establishing that perm is an equivalence—specifically

that it is transitive—which has a surprisingly unintuitive inductive proof. Such

properties are usually taken for granted in informal proofs of cut-elimination. Never-

theless, our experience has been that every property of multisets needed to formalize

cut-elimination is proved by straightforward induction.

3.3 One-Sided MALL

We have used the above encoding of multi-sets to define several one and two-sided

sequent calculi for fragments of classical linear logic. Here we give an illustration of

the one-sided multiplicative-additive fragment (MALL). Sequents in this fragment

K. Chaudhuri et al. / Electronic Notes in Theoretical Computer Science 332 (2017) 57–73 65

Define dual : o -> o -> prop by
; dual (atom A) (natom A)
; dual (tens A B) (par AA BB) := dual A AA /\ dual B BB
; dual one bot
; dual (plus A B) (wth AA BB) := dual A AA /\ dual B BB
; dual zero top.

Fig. 5. An asymmetric duality predicate.

are of the form � Γ, whose inference rules (sans cut) can be found in Fig. 3. The

sequent judgement � Γ is encoded as the inductively defined atom mall L, where

L represents Γ. The definition of mall is given in Fig. 4. Each definitional clause

describes, precisely, one of the rules of the sequent calculus, where the head of the

clause defines the conclusion of the inference rule, and the bodies the premises.

The second definitional clause, for instance, first uses adj to remove the principal

formula tens A B from L, yielding LL; this is then divided into JJ and KK using

merge, after which each operand of the ⊗ is added to one of the components to

build a corresponding mall premise.

Note that we do not have an explicit clause for exchange. Nevertheless, we can

establish the following theorem by a straightforward induction.

Theorem mall_perm : forall K L, mall K -> perm K L -> mall L.

Note that the theorem itself says nothing about the sizes of mall K and mall L, even

though it is the case that exchange is height-preserving admissible in the sequent

system. The one-sided cut-admissibility theorem will therefore need to be set up in

such a way that the size of the result of applying a permutation is not relevant for

the inductive hypotheses.

In fact, we will set up the one-sided formulation in such a way that only the

height of the derivation containing the positive variant—in the sense of focusing—of

the cut formula is relevant. To this end, we define an asymmetric predicate dual

that relates a positive formula with its dual, depicted in Fig. 5. For the negative

formulas, which are the second arguments to dual, we will instead prove inversion

lemmas by straightforward induction.

Theorem bot_inv : forall J L, mall L -> adj J bot L -> mall J.
Theorem par_inv : forall L JJ A B,

mall L -> adj JJ (par A B) L ->
exists KK LL , adj JJ A KK /\ adj KK B LL /\ mall LL.

Theorem wth_inv : forall L JJ A B,
mall L -> adj JJ (wth A B) L ->
exists KK LL, adj JJ A KK /\ mall KK /\ adj JJ B LL /\ mall LL.

The cut-admissibility theorem then uses our asymmetric dual predicate as follows:

Theorem cut : forall A B JJ J KK K LL ,
dual A B ->
adj JJ A J -> mall J ->
adj KK B K -> mall K ->
merge JJ KK LL ->
mall LL.

The proof proceeds by a nested induction on the first and third assumptions. This

nesting encodes the following measure for appealing to the inductive hypotheses:

either the rank decreases because of case analysis of dual A B, or the rank stays

the same and the height of mall J, which stands for the derivation that contains

K. Chaudhuri et al. / Electronic Notes in Theoretical Computer Science 332 (2017) 57–7366

the positive half of the cut formula pair, decreases.

To illustrate the proof, here is the case where the final rule to be applied in the

derivation of mall J is ⊗. Intuitively, we wish to implement the following reduction:

D1

� Γ1, A
D2

� Γ2, B

� Γ1,Γ2, A⊗B
⊗ E

� Γ3, A⊥ � B⊥

� Γ1,Γ2,Γ3
cut �

D1

� Γ1, A

D2

� Γ2, B

E
� Γ3, A⊥ � B⊥

� Γ3, A⊥, B⊥ �−1

� Γ2,Γ3, A⊥ cut

� Γ1,Γ2,Γ3
cut

The cut is reduced to two cuts of lower rank, even though the right premise of the

cuts can have larger sizes. Note the appeal to the inversion principle for �.

In the proof, this corresponds to the following proof state:

IH : forall A B JJ J KK K LL, dual A B * -> adj JJ A J -> mall J ->
adj KK B K -> mall K -> merge JJ KK LL -> mall LL

H2 : adj JJ (tens A1 B1) J
H4 : adj KK (par AA BB) K
H5 : mall K
H6 : merge JJ KK LL
H7 : adj LL1 (tens A1 B1) J
H8 : merge JJ1 KK1 LL1
H9 : adj JJ1 A1 J1
H10 : mall J1 **
H11 : adj KK1 B1 K1
H12 : mall K1 **
H14 : perm JJ LL1
H15 : dual A1 AA *
H16 : dual B1 BB *
============================
mall LL

Applying par_inv to H4 and H5 yields the new hypotheses:

H17 : adj KK AA KK2
H18 : adj KK2 BB LL2
H19 : mall LL2

The next step is to create the context Γ2,Γ3, A
⊥ which is the conclusion of the first

cut on B. In the current proof state, this corresponds to merging KK1 (Γ2) and KK2

(Γ3, A
⊥). After merging the contexts, we can apply the inductive hypothesis IH,

corresponding to the cut on B, which gives us the following new hypotheses:

H22 : merge KK1 KK2 L
H23 : mall L

Now we need to apply the cut on A, but to build the context of this cut we need

to perform a few operations. First, we need to discern AA (A⊥) from the context

L (Γ2,Γ3, A
⊥). This is done via the merge_unadj_2 theorem, which is part of the

library of multisets.

Theorem merge_unadj_2 : forall J K L KK A,
merge J K L -> adj KK A K -> exists LL, adj LL A L /\ merge J KK LL.

After applying this lemma, we will have a variable LL3 (Γ2,Γ3) which we can thus

merge with JJ1 (Γ1) to get the conclusion of the cut on A. The IH can now be

applied to obtain the following new hypotheses.

H24 : adj LL3 AA L
H25 : merge KK1 KK LL3
H28 : merge JJ1 LL3 L1
H29 : mall L1

K. Chaudhuri et al. / Electronic Notes in Theoretical Computer Science 332 (2017) 57–73 67

The case is nearly complete: we just need to show that L1 is a permutation of LL,

and then appeal to mall_perm on H29. Observe that they represent the same context

Γ1,Γ2,Γ3 but were constructed differently: LL is (Γ1,Γ2),Γ3 while L1 is Γ1, (Γ2,Γ3).

We can first apply merge_perm_1 to H6 and H14 to obtain:

H30 : merge LL1 KK LL

Finally, we can apply merge_assoc to H8, H25, H26, and H30 to obtain the required:

H31 : perm L1 LL

3.4 The Exponential Case

While the MALL cut-elimination proof is long in details, it is not particularly difficult

since there is always a single cut to eliminate. The picture gets considerably more

complicated with the exponentials, since a single cut rule is no longer sufficient,

or, to be more precise, the termination measure for eliminating cuts is much more

complex. The main problem is with permuting cuts past contraction rules:

D
� ?Γ1, A

� ?Γ1, !A
!

E
� Γ2, ?A⊥, ?A⊥

� Γ2, ?A⊥ contr

� ?Γ1,Γ2
cut �

D
� ?Γ1, A

� ?Γ1, !A
!

D
� ?Γ1, A

� ?Γ1, !A
!

E
� Γ2, ?A⊥, ?A⊥

� ?Γ1,Γ2, ?A⊥ cut

� ?Γ1, ?Γ1,Γ2
cut†

� ?Γ1,Γ2
contr∗

The instance of cut† is problematic, since neither premise is technically of strictly

lower measure: the height and cut-rank is the same in the left-premise, and the right

premise is the result of a cut that can be arbitrarily larger.

This problem can be solved in a number of ways, such as by including the number

of contractions on the cut-formulas as part of the measure. However, to correctly

formulate such a measure, we would need to incorporate multiset orderings, which is

not currently supported by Abella’s size annotations. We therefore use a different—

but still standard—solution of moving to a dyadic sequent calculus with sequents of

the form � Γ;Δ where Γ is interpreted as a set— i.e., admitting contraction and

weakening—that accumulates the ?-formulas. This context is treated additively in

binary rules and is allowed to be non-empty in axiomatic rules.

Importantly, with this separation of the context into zones, we have to increase

the number of cut principles to account for occurrences of cut-formulas in both zones.

Specifically, the dyadic formulation requires two cuts:

� Γ;Δ1, A � Γ;Δ2, A⊥

� Γ;Δ1,Δ2
cut

� Γ;A � Γ, A⊥; Δ

� Γ;Δ
ucut

The conditions for appealing to the inductive hypothesis is now more complicated.

An IH can be used if the cut-rank is smaller, or if the derivation with A is of lower

height, but in the case where both stay the same we can reduce a cut to a ucut. The

K. Chaudhuri et al. / Electronic Notes in Theoretical Computer Science 332 (2017) 57–7368

issue with contractions above reappears as an issue with dereliction as follows:

D
� Γ;A

E
� Γ, A⊥; Δ, A⊥

� Γ, A⊥; Δ
dl

� Γ;Δ
cut �

D
� Γ;A

D
� Γ;A

E
� Γ, A⊥; Δ, A⊥

� Γ;Δ, A⊥ ucut

� Γ;Δ
cut

However, since a ucut is allowed to justify a cut, there is no termination issue.

Formalizing this proof requires a few modifications to the representation of

MELL (multiplicative exponential linear logic) sequents, which are now given as a

ternary predicate mell : nat -> olist -> olist -> prop. The first argument

to mell is an explicit bound on the heights of derivations, which allows us to reason

explicitly about the height instead of in terms of the implicit sizes of least fixed point

definitions. This height is explicitly reduced by one in every recursive occurrence of

the predicate in the bodies of its definitional clauses; for example, here is the clause

corresponding to ⊗:

; mell (s X) QL L :=
exists A B LL , adj LL (tens A B) L /\
exists JJ KK, merge JJ KK LL /\

(exists J, adj JJ A J /\ mell X QL J) /\
(exists K, adj KK B K /\ mell X QL K)

To encode the ordering between the two cuts, we need to induct on an additional

weight parameter to the cut theorem that determines the kind of cut. We encode it

in Abella as follows:

Kind weight type.

Type heavy , light weight.

Define is_weight : weight -> prop by
; is_weight light
; is_weight heavy := is_weight light.

Note that is_weight heavy and is_weight light are both true, but the former

requires strictly more unfolding operations to derive it. This is sufficient to order

the two cuts, which we write as follows:

Theorem cut : forall A B X W,
dual A B -> is_nat X -> is_weight W ->

(W = light /\
forall JJ J KK K QL Y LL ,

adj JJ A J -> mell X QL J ->
adj KK B K -> mell Y QL K ->
merge JJ KK LL ->
exists Z, mell Z QL LL)

\/ (W = heavy /\
forall QL QQ K Y,

mell X QL (A :: nil) ->
adj QL B QQ -> mell Y QQ K ->
exists Z, mell Z QL K).

The first disjunct represents cut, while the second is ucut. The proof then begins:

induction on 1. induction on 2. induction on 3.

which encode the required lexicographic measure. Observe that once the theorem is

proved, each disjunct can be individually obtained by instantiating W with light

and heavy respectively.

K. Chaudhuri et al. / Electronic Notes in Theoretical Computer Science 332 (2017) 57–73 69

3.5 Two-Sided Calculi

We have also implemented the meta-theory of the two-sided sequent calculus for

MALL. The big differences between the one-sided and two-sided formulations are

that each connective has left and right introduction rules, and that the cut rules

apply to formulas on either side of the sequent arrow rather than in terms of duality.

Hence, we reason directly on is_fm instead of in terms of an asymmetric dual

predicate, which in turn means that we do an additional nested induction instead of

appealing to inversion lemmas. Cuts are now permuted upwards in both premise

derivations until they become principal. While the proofs are now longer because

of the larger number of inference rules, the ingredients remain largely the same. It

is worth noting that the cut permutations proved in the two-sided system can be

used to show strong normalization of a cut-elimination strategy for MALL, given an

ordering of the cuts.

4 Related work

We are certainly not the first to formalize a cut-elimination proof in a proof assistant.

We discuss here a few other projects on this direction and compare them with our

approach. This list is far from exhaustive.

Closest to our approach (in the sense that sequents and multisets are encoded)

we can cite [5] and [18]. In [5] the authors propose a generic method for formalizing

sequent calculi in Isabelle/HOL, making all lemmas and theorems parametric on a

set of rules. For the main cut-elimination theorem, weakening must be admissible.

They have proved cut-elimination for the sequent calculus GLSV for provability

logic, although in practice they proved the admissibility of multi-cut instead of cut

itself (the rules are shown to be equivalent for their system). The use of multi-cut is

justified to avoid the complicated cases where the cut-formula is contracted, which

is also our approach to exponentials.

A proof of cut-elimination for coalgebraic logics by Pattinson and Schröder was

formalized in Coq in [18]. The formalization uncovered a few mistakes in the original

proof which were discussed with Pattinson and Schröder and corrected. The author

has implemented multisets as setoids in Coq with lists as the underlying type and

permutation as the equivalence relation. Our treatment of multisets is largely similar.

The author also chose to define a type for heterogeneous lists for lists of a fixed size

as part of the encoding. As in [5], the proof is parametrized by a rule set.

To avoid dealing with explicit representations of contexts as multisets, a common

approach is to find a different representation for sequent calculus rules which mention

explicitly only the principal and auxiliary formulas. This is the path followed

in [14], [17], [10] and [19]. In [14] the author annotates sequents of the calculus

considered with proof terms, reducing cut-elimination to a type checking problem

on those terms. Since the logical framework is intuitionistic, the structural rules

of contraction and weakening are forced to be admissible for all such proof calculi.

One of the obvious advantages of this approach is avoiding explicit representations

of multisets; on the other hand, the adequacy of the term rewriting system to the

K. Chaudhuri et al. / Electronic Notes in Theoretical Computer Science 332 (2017) 57–7370

actual sequent calculus rules is only an informal argument that is not independently

verified.

The method developed in [14] was used in [17] for formalizing a proof of com-

pleteness of focusing for intuitionistic logic. The author avoids having to show

“tedious invertibility lemmas” by using a new proof of completeness that follows

from cut-elimination and generalized identity. A number of meta-theoretical prop-

erties are proved in this formalization. It would be interesting to see if his proof

of completeness of focusing could be formalized in Abella using our results. One

commonality between our approach and that of [17] is the use of cut weights to set up

a lexicographic measure. Another formal proof (in Coq) of completeness of focusing

for several systems was developed in [10], using an algebraic interpretation of the

logic which requires some assumptions on the sequent calculus, namely harmony (i.e.,

rules should come in “dual” pairs) and the admissibility of weakening and contraction.

It is difficult to see how these ideas can be generalized to the substructural case.

Other linear logic encodings in various proof assistants can be found in [11,12,16].

The goal of those works however was to obtain proof search engines for linear logic,

so there are no proofs of meta-theoretical properties of the encoded systems. In [11],

the author implements linear logic in Isabelle and uses a calculus with exchange

rules to avoid having to implement contexts modulo permutation. The same solution

is used in [16] for implementing linear logic in Coq, although a later implementation

by Cowley 9 uses permutation of contexts. In [12] linear logic is again implemented

in Isabelle for proof search, but this time rules are encoded using multisets. On

top of regular linear logic rules, the authors also add a set of “macro-rules” to the

system for facilitating proof search.

5 Conclusion

We have shown an implementation of a “textbook” proof of cut-elimination, using the

rewrite rules à la Gentzen, for various fragments of linear logic in the proof assistant

Abella. This is the first formalization of cut-elimination for linear logic to the best of

our knowledge. We have also implemented proofs of other meta-theoretical properties

using the same techniques. It required the implementation and proofs of several

lemmas about multisets, which we believe can be re-used for meta-theoretical proofs

about other calculi. The encoding of sequent calculus rules is quite intuitive and

similar to a logic program.

While formalizing this proof we have learned a few interesting things. First of

all, it was good to realize that proof assistants are already usable enough to handle

such proofs. We were skeptical about this at some points. In fact, we have started

translating the Abella code to Coq. The multiset library is fully specified and we have

some proofs for meta-theorems of MLL. Because Coq allows for fine programmatic

control of proof search, nearly all the required lemmas about the representation of

multisets are handled with single invocations of a simplification tactic tailor-made for

reasoning about multi-sets (written using Ltac). On the other hand, Coq’s induction

9 https://github.com/acowley/LinearLogic

K. Chaudhuri et al. / Electronic Notes in Theoretical Computer Science 332 (2017) 57–73 71

https://github.com/acowley/LinearLogic

is more primitive than Abella’s and requires making the induction measure explicit,

which in turn complicates meta-theoretic proofs, particularly those that rely on

lexicographic induction. Of course this might be caused by using an “Abella way of

thinking” when implementing the proofs in Coq. We noticed that a familiarity with

the proof assistant plays a big role when finding out the lemmas to prove and the

proof strategy to follow. Since each proof assistant is unique, reproving something

in another software is not so straightforward.

This being said, and despite the fact that we successfully finished several such

proofs, we must admit that the amount of boilerplate in the proofs shows us that

this approach is not yet ready for general purpose use. The trade-off between having

a formalized proof and the time taken to formalize it is still too big for the average

proof theorist. We believe this to be a general problem with proof assistants—not

just with Abella—given the related work we have found and our experience in porting

the code to Coq. Modularity techniques in proof assistants are already a great help

(indeed we have one implementation of multisets which is used by all encodings),

but there is still a considerable gap between the kinds of informal meta-theoretic

proofs one finds in the average proof theory paper and the formalizations. We are

investigating better ways to deal with the tedious and repetitive parts of proofs.

References

[1] Baelde, D., K. Chaudhuri, A. Gacek, D. Miller, G. Nadathur, A. Tiu and Y. Wang, Abella: A system
for reasoning about relational specifications, Journal of Formalized Reasoning 7 (2014).
URL http://jfr.unibo.it/article/download/4650/4137

[2] Bierman, G., A note on full intuitionistic linear logic, Annals of Pure and Applied Logic 79 (1996),
pp. 281 – 287.
URL http://www.sciencedirect.com/science/article/pii/0168007296000048

[3] Braüner, T. and V. de Paiva, Cut-elimination for full intuitionistic linear logic, Technical Report
BRICS-RS-96-10, BRICS, Aarhus, Danemark (1996), also available as Technical Report 395, Computer
Laboratory, University of Cambridge.

[4] Danos, V., “Une Application de la Logique Linéaire a l’Etude des Processus de Normalisation
(principalement du λ-calcul),” Ph.D. thesis, Université Paris (1990).

[5] Dawson, J. E. and R. Goré, Generic methods for formalising sequent calculi applied to provability
logic, in: Logic for Programming, Artificial Intelligence, and Reasoning - 17th International Conference,
LPAR-17, Yogyakarta, Indonesia, October 10-15, 2010. Proceedings, 2010, pp. 263–277.
URL http://dx.doi.org/10.1007/978-3-642-16242-8_19

[6] Gacek, A., “A Framework for Specifying, Prototyping, and Reasoning about Computational Systems,”
Ph.D. thesis, University of Minnesota (2009).

[7] Gacek, A., D. Miller and G. Nadathur, Nominal abstraction, Information and Computation 209 (2011),
pp. 48–73.

[8] Gacek, A., D. Miller and G. Nadathur, A two-level logic approach to reasoning about computations,
Journal of Automated Reasoning 49 (2012), pp. 241–273.
URL http://arxiv.org/abs/0911.2993

[9] Goré, R. and R. Ramanayake, Valentini’s cut-elimination for provability logic resolved, The Review of
Symbolic Logic 5 (2012), pp. 212–238.
URL http://journals.cambridge.org/article_S1755020311000323

[10] Graham-Lengrand, S., “Polarities & Focussing: a journey from Realisability to Automated Reasoning,”
Habilitation thesis, Université Paris-Sud (2014).
URL http://hal.archives-ouvertes.fr/tel-01094980

K. Chaudhuri et al. / Electronic Notes in Theoretical Computer Science 332 (2017) 57–7372

http://jfr.unibo.it/article/download/4650/4137
http://www.sciencedirect.com/science/article/pii/0168007296000048
http://dx.doi.org/10.1007/978-3-642-16242-8_19
http://arxiv.org/abs/0911.2993
http://journals.cambridge.org/article_S1755020311000323
http://hal.archives-ouvertes.fr/tel-01094980

[11] Groote, P., Linear logic with isabelle: Pruning the proof search tree, in: P. Baumgartner, R. Hähnle and
J. Possega, editors, Theorem Proving with Analytic Tableaux and Related Methods: 4th International
Workshop, TABLEAUX (1995), pp. 263–277.
URL http://dx.doi.org/10.1007/3-540-59338-1_41

[12] Kalvala, S. and V. D. Paiva, Mechanizing linear logic in isabelle, in: In 10th International Congress of
Logic, Philosophy and Methodology of Science, 1995.

[13] Marin, S. and L. Straßburger, Label-free modular systems for classical and intuitionistic modal logics,
in: Advances in Modal Logic 10, invited and contributed papers from the tenth conference on ”Advances
in Modal Logic,” held in Groningen, The Netherlands, August 5-8, 2014, 2014, pp. 387–406.
URL http://www.aiml.net/volumes/volume10/Marin-Strassburger.pdf

[14] Pfenning, F., Structural cut elimination, in: Proceedings of the 10th Annual IEEE Symposium on Logic
in Computer Science, LICS ’95 (1995), pp. 156–.
URL http://dl.acm.org/citation.cfm?id=788017.788741

[15] Pinto, L. and T. Uustalu, Proof search and counter-model construction for bi-intuitionistic propositional
logic with labelled sequents, in: M. Giese and A. Waaler, editors, Automated Reasoning with Analytic
Tableaux and Related Methods: 18th International Conference, TABLEAUX 2009, Oslo, Norway, July
6-10, 2009. Proceedings (2009), pp. 295–309.
URL http://dx.doi.org/10.1007/978-3-642-02716-1_22

[16] Power, J. and C. Webster, Working with linear logic in coq, in: 12th International Conference on
Theorem Proving in Higher Order Logics, 1999, pp. 1–16.

[17] Simmons, R. J., Structural focalization, ACM Transactions on Computational Logic 15 (2014), pp. 21:1–
21:33.
URL http://doi.acm.org/10.1145/2629678

[18] Tews, H., Formalizing cut elimination of coalgebraic logics in coq, in: D. Galmiche and D. Larchey-
Wendling, editors, Automated Reasoning with Analytic Tableaux and Related Methods: 22nd International
Conference, TABLEAUX 2013, Nancy, France, September 16-19, 2013, Proceedings (2013), pp. 257–272.
URL http://dx.doi.org/10.1007/978-3-642-40537-2_22

[19] Urban, C. and B. Zhu, Revisiting cut-elimination: One difficult proof is really a proof, in: A. Voronkov,
editor, Rewriting Techniques and Applications: 19th International Conference, RTA 2008 Hagenberg,
Austria, July 15-17, 2008 Proceedings (2008), pp. 409–424.
URL http://dx.doi.org/10.1007/978-3-540-70590-1_28

K. Chaudhuri et al. / Electronic Notes in Theoretical Computer Science 332 (2017) 57–73 73

http://dx.doi.org/10.1007/3-540-59338-1_41
http://www.aiml.net/volumes/volume10/Marin-Strassburger.pdf
http://dl.acm.org/citation.cfm?id=788017.788741
http://dx.doi.org/10.1007/978-3-642-02716-1_22
http://doi.acm.org/10.1145/2629678
http://dx.doi.org/10.1007/978-3-642-40537-2_22
http://dx.doi.org/10.1007/978-3-540-70590-1_28

	Introduction
	Background: Relational Reasoning in Abella
	Encoding an Object Language
	Encoding Object Formulas
	Multisets
	One-Sided MALL
	The Exponential Case
	Two-Sided Calculi

	Related work
	Conclusion
	References

